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Ovutline

* Introduction to geomechanical risks

* UQ for subsurface stress estimation
* Regional stress observations
* Core and log data
e Stress measurements

e Risk assessment based on stress
estimate

* Example: SWRP Farnsworth Unit
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Geomechanical risks: Induced Seismicity

Uncertainties:

* State of stress

* Presence, location, orientation of fault
* Magnitude of pore pressure change

fault

* Fault properties

I pressure

I plume
|
I
!
White et al, (2016) Induced Seismicity and Carbon Storage: Risk Assessment and Mitigation
Strategies. NRAP-TRS-11-005-2016
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Stress tensor has six components

Oy
On
o = O-H
- 4 Oy

) _ Oh * three principal stresses and three

directions
| OR
— e six components of full tensor
Oy
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Vertical siress is usually relatively well known

oy (d) ~ f o, gzdz
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Minimum horizontal siress direction and magnitude
needs to be measured

Can be measured using small
hydraulic fractures
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Maximum horizontal siress is difficult o accurately
measure

* Wellbore breakouts can indicate oy > oy,
* Re-opening fracture with packer can give
estimate

breakout
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- 3D geomechanical model requires defining rock
mechanical properties to the domain

ey Fault3
- 9;§.v'9‘> e
o

Fault 1

Example from Bérard, et al, 2015, “High-resolution 3D structural geomechanics modeling for
hydraulic fracturing,” SPE-173362-MS 8
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Model calibration with stress measurements

Model is calibrated by specifying tectonic strains to match stress measurements

Estimation is
deterministic. It gives no
little information about
uncertainties.

E 8§ § 8

i %

Example from
Bérard, et al, 2015 ?
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Sources of stress state uncertainty

e Uncertain rock mechanical properties (in 3D)
* Uncertain boundary conditions/depositional history
* Uncertain stress measurements (or lack thereof!)
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Bayesian approach to geomechanical modeling

e Carefully chosen prior distributions
* Stress state/model boundary conditions
* Rock mechanical properties

 Express all measurements/observations as statistical distributions
* Regional stress observations
 Mechanical properties measured on core samples
e Stress measurements

* Enables a value-of-information analysis to drive further characterization
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Constructing prior distribution for stress state

For this analysis we take oy and P, to be known with high certainty

Begin with uniform (compressive) joint prior distribution:

const, oy > oy,
0, otherwise

const,oy > 0
0, otherwise

P(UH)={ P(op) ={

Further constraint is provided by strength-based arguments (Zoback et al (2003)):

const, fyc < 0
P(O-V, O-H) O-h) Ppi l’lOI Cof) = { O fMCM; O

N\
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Mohr-Coulomb or other failure criterion

Here Cor = 0
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Stress state consiraint by fault strength

Assign lognormal probability distribution for friction coefficient (Steele (2008))

with a mode of 0.68 and g, = 0.15
Posterior stress distribution calculated using

40 Bayes’ law:
3.5 (D] )
3.0 P(D|oy, 0y)P (0, 03)
£ 25 P(on,04|D) =
T 2.0 P(D)
S 15
O 40 Likelihood function, where D is the existence of
0.5 faults with the given properties
0.0
1 Inu, —u
0.0 0.5 1.0 15 2.0 _ c 0
Friction Coefficient P(D |94, Gh) =1- E erfc [_ O'M\/i

13

F= %5 U.S. DEPARTMENT OF N NATIONAL

;;""r i\
5 LA s TECHNOLOGY
.25 ENERGY TLJIGINRISR

AAAAAAAAAAAAAAAAAA
EST.1943




Stress state consiraint by fault strength

Example: In SWRP Farnsworth
Unit, the primary reservoir depth is

2344 m 250
200

5
o 150

oy = 56 MPa =

1

P, = 14.8 MPa Sl
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Stress state constraint by regional stress observations

Oy
A
9r = \/(UH —oy)? + (o — 0,)?
Jo = ho fl
. (—1 0 0)
hy=—{ 0 -1 0
\/i 0 0O O
R 1 O'h — O'V O 0
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Stress state constraint by regional stress observations
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Probability

Stress state constraint by regional stress observations
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Triaxial compression test

0, = Axial stress

€,, = radial strain

(

€, = Axial strain

\

P. = o, = g, = Radial stress
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MCMC analysis of triaxial compression data

Example of axial stress/strain of Morrow SS (SWRP)

50 : . o
a0 | o o Linear elasticity used in this case, where
T 30 — data . the stress and strain tensors are related by:
= 2 s
~ 10 ; gij = Cijki€xi
B 0 /11
-10 $
30 Eigenvalues of Cijki have well defined
c %g (lognormal) distributions (Tarantola, 2005).
m .
= 15 L : . :
2 475 Objective is to find the joint posterior
= 05 distribution
& 0.0
e . P(Ay, Ny, A, Ay, @)
) ) ) ) a
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MCMC analysis of triaxial compression data

Prior Distributions:

__Jconst, Gpin < A < Kpax
P(logAq) = { 0, otherwise
const,A; > A,

vpn >0 - P(logh;) = { 0, otherwise

( A A,

sin“a(A; — Ay) + A,
0, otherwise

const, A; >

Vhh >0- P(lOgAg) = <

\
20

s Los Alamos  pcific Northwest
AAAAAAAAAAAAAAAAAA NATIONAL LABORATORY
EST.1943

N NATIONAL

7%, U.S. DEPARTMENT OF
s (A ) Y TECHNOLOGY
NS ENERG TL LABORATORY




Example from the Morrow sandstone (SWRP)

- < Ale ]
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='1329 @ 521.07 } -
13.22 | 20.90 } g
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Reservoir stress path using measured elastic
properlies

c
O
2045
.. . . ] >
Uniaxial strain horizontal stress path: S 0.40
<
Aa, : Cis % 0.35
—_— = = _
AP, V= Qn Cas P 0.30
(-
| | | O 0.25
Change in Terzaghi effective stress (used =
: _ = 0.20
for failure): ._rac
0.15
— _ ¥o!
Aoy = AP (yn—1) O 15 20 25 30 35 40
o

Pore Pressure (MPa)
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Posterior stress distribution after hypothetical stress

measurement
60 250 x 1079
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E 50 167 x 10_6
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Advantages of a Bayesian approach to
geomechanics:

 provides more meaningful estimates to other components of a full risk
assessment (e.g. fault activation, seal integrity, etc.)

* facilitates value-of-information analyses to make smarter characterization
decisions

* more easily integrated into real-time data analysis and decision making
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